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The on-lattice kinetic Monte Carlo (KMC) method provides a powerful tool to simulate the
J–V properties of organic solar cells. However, the computational cost associated with
charge injection may limits its applicability. In the attempt to overcome this limitation,
we describe in this paper a coarse-grained numerical approach to photocurrent generation
in bilayer heterojunction solar cells. Starting from the KMC algorithm, a self-consistent
numerical procedure is proposed to find the steady-state solutions of the kinetic equations
describing particle dynamics in one dimension across the layer thickness. Our model incor-
porates the generation, transport and recombinations of charge carriers, excitons, and elec-
tron/hole pairs, whose introduction is required to correctly describe interfacial phenomena
at the coarse-grained level. A continuum model of the electrostatic interactions among
charge carriers is proposed and used to compute their hopping rates during the simulation.
The model is used to investigate the J–V properties of Cathode/PCBM/P3HT/PEDOT:PSS/ITO
bilayer devices, showing that Fermi level pinning at the Cathode/PCBM interface must be
invoked to accurately model the experimental behavior. From the fitting to the experimen-
tal J–V data, we conclude the short-circuit current density to be mainly associated with a
high exciton diffusion length. The analogies and differences between our model and exist-
ing KMC and drift–diffusion approaches are also discussed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Organic solar cells (OSCs) offer a promising and inexpen-
sive alternative to silicon-based ones, in the race for renew-
able and environmentally friendly energy sources [1].
Although significant progress has been made since their dis-
covery, OSCs are not yet ready for the energy market. The
most efficient OSC to date have reached power conversion
efficiencies of about 8–9% [2], close to the 10% efficiency
considered necessary for beginning commercial exploita-
tion. Different strategies are currently pursued with the
. All rights reserved.
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aim of enhancing OSC competitiveness. The synthesis of
new materials [3], new architectures [4] and the optimiza-
tion of the processing conditions [5] provide possible routes
to boost OSC performance. These strategies alone, however,
cannot be exploited successfully without a good under-
standing of the physical processes underlying photocurrent
generation in these devices. Computational studies can pro-
vide useful insights about these phenomena and, therefore,
play an important role in the quest for higher efficiencies.
The characterization of the relationship between device
parameters and current–voltage (J–V) properties is of spe-
cial interest, in view of the possibility to identify the factors
limiting device efficiency.

The drift–diffusion (DD) [6] and the kinetic Monte
Carlo (KMC) [7] methods are currently being applied by
several groups to the numerical simulation of OSC’s. Each
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of these methods has its strengths and weaknesses. These
rely on different levels of description and starting
assumptions, which can be understood by considering
their historical development. The DD method was origi-
nally developed for the simulation of inorganic (e.g. Si-
based) field-effect transistors (FET’s) and light-emitting
diodes (LED’s) [8]. It involves the search of the steady-
state solutions to certain partial differential equations
describing the densities and fluxes of charged particles
and excitons. The use of a continuum mean-field descrip-
tion is almost natural for those devices, but its justifica-
tion is certainly more problematic for an OSC, where
typical charge carrier densities are orders of magnitude
lower. Also, the description of charge extraction and
injection at the electrodes involves some complex equa-
tions, typically derived from the Scott–Malliaras model
of metal/semiconductor interfaces [9]. The KMC method
is conceptually simpler and more general, but it is com-
putationally more intensive. It does not adopt the contin-
uum hypothesis, as it simulates the dynamics of the
individual quasi-particles through random hopping
events. It was first used to study some specific aspects
of organic semiconducting materials, one example being
Bässler’s work on the effect of disorder on charge trans-
port [10]. The application to whole OSC device models
is much more recent and initially only addressed the
behavior close to the short-circuit (SC) condition. The first
full current–voltage (J–V) curves have appeared even
more recently [11]. The main reason for this slow devel-
opment is the difficulty of simulating the ‘‘dark current’’,
which is related to charge injection close to the open-cir-
cuit (OC) condition.

The open-circuit voltage (Voc) is a key parameter for the
characterization of the performance of an OSC. By defini-
tion, no net current flows through the device under OC con-
ditions. This occurs because the charges injected and
extracted at the electrodes exactly balance each other. In
KMC, charge injection is usually simulated by means of
thermally activated hopping processes across the metal/or-
ganic interface. In practice, each electrode is discretized into
a two-dimensional grid of charge-injecting sites, typically
on the order of 104 for a 100 � 100 nm2 surface. The injec-
tion rate for each site is assumed to be of the Miller–
Abrahams type [12], so that the injection and extraction
rates are related to each other by e�

D
kBT , where D is the barrier

height. Owing to the large number of charge-injecting sites,
decreasing D may increase the overall injection rate far be-
yond that of any other process. When this happens, the
dynamical evolution of the system is dominated by the re-
peated occurrence of injection and extraction events [13].
Since the rate of these transitions can be orders of magni-
tude higher than that of all other events, the number of iter-
ations necessary to adequately sample the configuration
space soon becomes prohibitive. This exponential increase
of CPU time is known to the KMC community as the
‘‘small-barrier’’ problem [14]. Accelerated approaches, such
as AS-KMC [15], may eventually deal with this problem.
Their application to OSC models has not yet been at-
tempted, but in any case it does not necessarily guarantee
reasonable computational efficiencies. In fact, an additional
computational burden can be expected, due to the accumu-
lation of charges close to the metal contacts under the effect
of the image potential.

The issues outlined so far restrict the applicability of
KMC to devices with moderately large injection barriers
(0.4 eV) [11,16–18], and prevent the simulation of devices
characterized by ohmic behavior. In the attempt to over-
come these limitations, we propose in this paper a coarse-
grained approach to photocurrent generation. The model
adopts a one-dimensional representation of a bilayer de-
vice, which is derived from the three-dimensional one used
in KMC simulations. Coarse-grained rates are developed
from their microscopic analogs to describe the generation,
transport and recombination of charge carriers and exci-
tons. In analogy with DD methods [19–21], strongly bound
electron–hole pairs are introduced to account for interfacial
phenomena at the coarse-grained level. To overcome the
small-barrier problem, the kinetic equations underlying
the system dynamics are solved self-consistently. In this re-
spect, our method resembles the so-called ‘‘master equa-
tion’’ approaches [22–26]. The electrostatic interactions
among charge carriers are evaluated by a continuum model,
developed from that used in three-dimensional KMC simu-
lations. While in our previous KMC work where we were
primarily concerned with an exact evaluation of the electro-
static interactions [27], our main aim here is to make con-
tact with some real experimental data, and this has led us
to a more approximate description in order to be computa-
tionally efficient. Henceforth, the present method will be
denoted by 1DCG (one-dimensional coarse-grained).

The 1DCG model is naturally suited to the simulation of
bilayer devices, for which there has recently been a resur-
gence of interest. In particular, Ayzner et al. [28] produced
P3HT/PCBM bilayer devices with power conversion effi-
ciencies up to 3.5%. In the same work, they also extensively
characterized the bilayer morphologies, explicitly demon-
strating by different microscopies the presence of a sharp
and flat interface between P3HT and PCBM, which agrees
with our model assumptions. On the other hand, the pre-
cise extent of this interfacial mixing is still a matter of de-
bate. For example, Gevaerts et al. [29] have recently shown
that annealed bilayers may outperform the bulk hetero-
junction devices with the same nominal composition and
same total thickness, if partial intermixing at the interface
occurs. Other potential advantages of bilayers over bulk
heterojunctions are the greater ease of fabrication and
morphological stability over time.

The following section introduces our computational
model of the device and discusses our numerical methods.
More technical aspects entering the calculation of electro-
static interactions are discussed in an Appendix. In the Re-
sults section, we apply the 1DCG model to the simulation
of Cathode/PCBM/P3HT/PEDOT:PSS/ITO bilayers with high
fill factors. These have been specially assembled using dif-
ferent Cathode materials, other things being equal. The
model parameters are obtained by fitting the simulation
results to the experimental J–V curves. We show that
assuming Fermi level pinning at the Cathode/PCBM inter-
face leads to the best fitting results. In agreement with
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the interpretations of some experimental data [30], our re-
sults also suggest that the exciton diffusion length might
be a key factor responsible for device efficiency. Finally,
we discuss the analogies and differences between our
model and existing KMC [11,16–18] and drift–diffusion
[19–21] approaches.
2. Model

In this section we present a numerical model for photo-
current generation in bilayers, which is obtained by
coarse-graining the conventional on-lattice KMC approach
in both space and time. Spatially coarse-graining is gener-
ally used in KMC to extend the simulation length scale and
reduce the CPU effort [31,32]. Here, conversely, it is mainly
adopted to reduce the system dimensionality and simplify
the kinetic equations associated with particle dynamics. To
overcome the small barrier problem, these equations are
solved in continuous – rather than discrete – time. As in
master equation approaches [22–26], the electrostatic
interactions among charge carriers are approximated by
means of a continuum model. The development of this
model, carried out in the Appendix, represents one innova-
tive aspect of our approach.
2.1. Device representation

We consider a device with infinite periodic slab geome-
try. In an on-lattice KMC simulation, this would be repre-
sented by a simple cubic array of Mx �M y �Mz sites, to
which periodic boundary conditions are applied along the
x and y directions. Defining ‘ as the lattice constant, the po-
sition of a site (or a particle) in the device can be written as
r ¼ ðx; y; zÞ ¼ ðmx‘;my‘;mz‘Þ, where ðmx;my;mzÞ are inte-
gers with mx 2 ½1;Mx�, my 2 ½1;My�, mz 2 ½0;Mz þ 1�. The
layers of sites with mz = 0 and mz = Mz + 1 represent the
cathode and the anode, respectively. In bilayer devices,
the donor and acceptor materials form a planar interface.
Its location is specified by an integer Lz 2 [2,Mz � 1]. All
the sites with 1 6mz

6 Lz are acceptors (A), all those with
Lz + 1 6mz

6Mz are donors (D). Each site can be occupied
by at most one quasi-particle (electron, hole or exciton).

Taking advantage of device symmetry, and neglecting
the possibility of positional and energetic disorder [10],
we spatially coarse-grain this three-dimensional grid into
a one-dimensional one, by grouping all sites within the
layer characterized by a certain value of mz. In the new rep-
resentation, the device appears as a collection of Mz + 2 lay-
ers, sequentially stacked on the top of each other along the
Fig. 1. Example of coarse-graining. A three-dimensional model device comprisi
(right). Different colors are used to distinguish electrode (green), acceptor (blue
along z is also shown. (For interpretation of the references to colour in this figu
z axis and separated from each other by ‘. An example of
such a representation is given in Fig. 1). The generic i-th
layer comprises Mxy = Mx �My microscopic sites and is
characterized by an overall occupancy number,
0 6 Ni 6Mxy, that accounts for all kind of particles therein.
These may be excitons Nex

i

� �
, electrons (Nel

i , only for A lay-
ers) and holes (Nho

i , only for D layers), as in conventional
KMC practice. In addition, if i 2 {Lz,Lz + 1}, there may be
some electrons and holes coulombically bound at the D/A
interface (Ngp). These geminate pairs are introduced in
the one-dimensional model to describe interface phenom-
ena, as we shall see below. Cathode and anode act as
charge reservoirs for electrons and holes, respectively. It
is assumed that the carriers may freely flow through them,
e.g. without affecting their occupancy, which is constant
and equal to Mxy. The structure of the device and the con-
tributions of the different kinds of particles to the occu-
pancy of the layers are summarized in Table 1.

2.2. Coarse-graining the rates describing photocurrent
generation

We now focus on the processes responsible for photo-
current generation. The conversion of light into electricity
in OSC has been thoroughly described in a number of re-
views [33] and in our previous article [27]. It is simulated
in KMC by means of the events listed in Table 2. The rates
at which these processes occur in three-dimensional KMC
simulations usually refer to single sites, or to individual
particles. All of these rates have analogs in the 1DGC mod-
el, and we shall derive them by an approach similar to that
used by Dai et al. [32] in a different context. We shall see
that the introduction of geminate pairs in the 1DCG model
implies some additional events, which have no analogs in
the KMC model.

To begin with, we consider exciton-related processes. In
KMC simulations, the absorption of a photon immediately
leads to the creation of one exciton in the photoactive
layer. When optical interference effects are not considered,
as it is often the case, the creation of excitons is uniform
and may occur randomly at any unoccupied site with rate
constant wexg. The coarse-grained rate for this event can be
obtained by summing the contributions of all the sites
belonging to a layer. For the i-th layer, this leads to:

Wexg
i ¼ wexg Mxyð1� �riÞ ð1Þ

where �ri ¼
P

k2Xi
rk=Mxy

� �
is the average occupancy of the

i-th layer. Xi identifies all sites in the i-th layer, while rk is
the occupancy (0 or 1) of the k-th site. Notice that we are
ng few hopping sites (left) is coarse-grained into a one-dimensional one
), and donor (red) layers. For better clarity, the position of the electrodes
re legend, the reader is referred to the web version of this article.)



Table 1
Device structure and layer occupancy numbers.

Material i Ni

Cathode =0 ¼ Nel
i ¼ Mxy

Acceptor 2[1,Lz � 1] ¼ Nel
i þ Nex

i

Interface (A) =Lz ¼ Nel
i þ Nex

i þ Ngp

Interface (D) =Lz + 1 ¼ Nho
i þ Nex

i þ Ngp

Donor 2[Lz + 2,Mz] ¼ Nho
i þ Nex

i

Anode =Mz + 1 ¼ Nho
i ¼ Mxy

Table 2
Overview of the KMC events in OSC modeling.

Event Symbol

Exciton generation by light absorption exg
Exciton diffusion by hopping exh
Exciton decay exd
Exciton separation at a D/A interface exs
Electron/hole recombination ehr
Electron (hole) transport via hopping elh (hoh)
Electron (hole) collection at the cathode (anode) elc (hoc)
Electron (hole) injection from the cathode (anode) ein (hin)
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using a lowercase letter (w) for the KMC rates, an upper-
case letter (W) for the 1DGC ones. This may also be
written:

Wexg
i ¼ wexg Mxy hi ð2Þ

where hi is the fraction of unoccupied sites in the i-th layer:

hi ¼ 1� Ni

Mxy

� �
: ð3Þ

Once generated, the excitons may diffuse isotropically via
hopping between nearest-neighbor sites. We assume that
they do not interact with the other particles (apart from
the restriction preventing multiple occupancy of sites),
nor with the electric field. Under these conditions, an
expression for the attempt-to-hop frequency can be readily
derived from the exciton diffusion coefficient Dex [34]:

wexh ¼ 6 Dex=‘
2: ð4Þ

On the original three-dimensional lattice, up to six destina-
tion sites are available to the hopping exciton. On average,
only two out of six hops will contribute to its diffusion in
the z direction. Therefore, on going to the one-dimensional
model, the coarse-grained rate (from layer i to layer
j = i ± 1) becomes:

Wexh
i;j ¼

1
3

wexhhj½di;jþ1 þ di;j�1�: ð5Þ

Eq. (5) refers to a single particle and should not be con-
fused with the overall exciton hopping rate, Nex

i wexhhj one
would use in coarse-grained KMC (CG-KMC) simulations
[32]. The factor Nex

i will be recovered in constructing the ki-
netic equation describing exciton dynamics. Note that, Eq.
(5) prevent the diffusion of the excitons into electrodes,
e.g. Wexh

1;0 ¼Wexh
Mz ;Mzþ1

¼ 0, according to the above assump-
tions (see Table 1).
In addition to hopping, an exciton may decay (in which
case the absorbed photon is wasted) or, if it reaches either
side of the D/A interface, it may dissociate into an elec-
tron–hole pair. The single-particle exciton decay rate with-
in the layer is defined as Wexd = wexd. The exciton diffusion
length, Lex, can be calculated from Eq. (4) as:

Lex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 Dex=wexd

q
: ð6Þ

In KMC, the charge separation is accomplished by placing
the electron on an A site and the hole on a neighboring D
site. Owing to the low dielectric constant of organic mate-
rials (typically �r ’ 2 � 3), the newborn charges strongly
interact with each other via the Coulomb potential. The
resulting complex is characterized by spatially correlated
carrier motions (the electron and hole ‘‘slide together’’
along the D/A interface [18,35]), which cannot be ade-
quately described at the 1DGC level. To overcome this dif-
ficulty, we assume that exciton dissociation does not
directly lead to free charges but rather to geminate elec-
tron–hole pairs. The rate at which this process occurs is,
for a single exciton:

Wexs ¼ wexs minfhLz ; hLzþ1g: ð7Þ

where the factor minfhLz ; hLzþ1g accounts for the occupancy
of the interfacial layers. The rate constant wexs is usually ta-
ken as the inverse of the exciton dissociation time, esti-
mated at about 45 fs [33]. Geminate pairs may also form
when an electron and a hole meet at opposite sides of
the interface. The overall rate for this recombination pro-
cess is assumed to be of the Langevin type [36]:

Wehr ¼
Nel

Lz
Nho

Lzþ1

Mxy‘
3

e lel
0 þ lho

0

� �
ere0

ð8Þ

where lelðhoÞ
0 is the zero-field mobility of electrons (holes), e

the elementary charge and e0 is the vacuum permittivity.
The first term in Eq. (8) represents the effective density
of carriers that may lead to geminate pair formation (e.g.
those occupying nearest neighbours sites). Use of the
Langevin formula in Eq. (8) is not completely correct, since
it assumes that both carriers may diffuse in a homoge-
neous three-dimensional medium. Our choice is motivated
by the need to supply our model with a simple equation
describing electron–hole recombination at the interface.
A number of studies [37] have shown the Langevin formula
to overestimate the charge recombination efficiency. To ac-
count for this effect, additional calculations were per-
formed after decreasing the recombination rate by a
factor of ten. The model gave essentially the same results
in terms of current density and Voc position.

Like excitons, geminate pairs are treated as non-
interacting particles. Once formed, a geminate pair can
either decay or dissociate into free charge carriers with rates
Wgpd and Wgps, respectively. The latter process produces free
charge carriers at the interface layers. To simplify the imple-
mentation, we obtain its rate from those for charge hopping
away from the interface, along the z axis:

Wgps ¼ welh
0 þwhoh

0

� �
exp �DEgps

kBT

� �
ð9Þ



754 M. Casalegno et al. / Organic Electronics 13 (2012) 750–761
where DEgps accounts for the effect of the external applied
field (Vext), the difference in electrode work functions (D/
= /anode � /cathode), and the change in the Coulomb poten-
tial energy:

DEgps ¼ eVext � D/
Mz þ 1

� DC; ð10Þ

where:

DC ¼ e2

4pere0

1
2‘
� 1
‘

� �
: ð11Þ

The diffusion of charge carriers is treated by the Miller–
Abrahams hopping model [12], restricted to nearest-
neighbor sites. In analogy with the case of exciton diffusion
(Eq. (5)), we may write the 1DGC hopping rate as:

WelhðhohÞ
i;j ¼ 1

3
welhðhohÞ

0 Bi;jhj½di;jþ1 þ di;j�1�: ð12Þ

Here welhðhohÞ
0 represents the maximum hopping rate of

electrons (holes) [16]:

welhðhohÞ
0 ¼ 6kBTlelðhoÞ

0

e‘2 : ð13Þ

The Bi;j factor accounts for the effect of the D and A energy
levels and of the electric fields on the hopping rates. We
use the following approximate expression:

Bi;j ¼
1; DEi;j 6 0

exp � DEi;j

kBT

� �
; DEi;j > 0

8<
: ð14Þ

where DEi;j is the average transition energy per particle.
This is the sum of three contributions:

DEi;j ¼ DE0
i;j þ DEF

i;j þ DEC
i;j: ð15Þ

DE0
i;j represents the average change in single-site energy

associated with the HOMO (H) and LUMO (L) levels occu-
pied by holes and electrons, respectively. Here we neglect
the possibility of energy disorder (as in Bässler’s Gaussian
energy model [10]). All the acceptor sites have identical
energy levels (EH

A and EL
A), similarly for the donor sites (EH

D

and EL
D). Given this assumption, we may write:

DE0
i;j ¼

EL
j � EL

i for electrons;

EH
i � EH

j for holes:

(
ð16Þ

DEF
i;j accounts for the effect of an electric field directed

along z, and can be written as:

DEF
i;j ¼ �

j� i
Mz þ 1

� �
ðeVext � D/Þ: ð17Þ

The + and � signs hold for holes and electrons, respec-
tively. The last term, DEC

i;j accounts for the electrostatic
interactions among charge carriers, including also their
‘‘images’’ within the metallic electrodes (see Appendix A).
To confine electrons and holes in the respective phases
(A for electrons, D for holes), we set:

WelhðhohÞ
Lz ;Lzþ1 ¼WelhðhohÞ

Lzþ1;Lz
¼ 0: ð18Þ

Charge injection (ein, hin) and extraction (elc, hoc) are both
treated as hopping processes. Their rates are evaluated
according to Eq. (12). According to the assumptions made
at the beginning of this Section, extraction rates are calcu-
lated setting h0 ¼ hMzþ1 ¼ 1. The average energy levels of
the electrodes in Eq. (16), EL

0 and EH
Mzþ1, are set to �/cathode

and �/anode, respectively.

2.3. The kinetic equations

We may now insert the coarse-grained rates derived
above into the kinetic equations describing photocurrent
generation in organic bilayer devices. It is worth noting
that these rates could potentially be used to perform CG-
KMC simulations. Use of this approach, however, would
not solve the small-barrier problem detailed in the Intro-
duction. To construct the kinetic equations, we consider
the change in occupancy numbers due to the generation,
transport, and recombination processes at each layer. The
following set of equations is obtained:

dNex
i

dt
¼Wexg

i þ Nex
i�1 Wexh

i�1;i þ Nex
iþ1Wexh

iþ1;i

� Nex
i Wexh

i;i�1 þWexh
i;iþ1 þWexd

� �
1 6 i 6 Mz ð19Þ

dNgp

dt
¼ Nex

Lz
þ Nex

Lzþ1

� �
Wexs þWehr

� NgpðWgpd þWgpsÞ i ¼ Lz; Lz þ 1 ð20Þ
dNel

i

dt
¼Welg

i þ Nel
i�1 Welh

i�1;i þ Nel
iþ1Welh

iþ1;i

� Nel
i Welh

i;i�1 þWelh
i;iþ1

� �
1 6 i 6 Lz ð21Þ

dNho
i

dt
¼Whog

i þ Nho
i�1Who

i�1;i þ Nho
iþ1Whoh

iþ1;i

� Nho
i Whoh

i;i�1 þWhoh
i;iþ1

� �
Lz þ 1 6 i 6 Mz ð22Þ

where the time dependence of occupancy numbers has
been dropped for convenience. To account for the genera-
tion of geminate pairs in Eqs. (19)–(22), exciton hopping
rates across the D/A interface are modified as follows:

Wexh
i;iþ1 ¼Wexs;Wexh

iþ1;i ¼ 0 for i ¼ Lz

Wexh
i;i�1 ¼Wexs;Wexh

i�1;i ¼ 0 for i ¼ Lz þ 1
ð23Þ

The rates WelgðhogÞ
i in Eqs. (21) and (22) provide the net gen-

eration rate of charge carriers at the D/A interface:

WelgðhogÞ
i ¼

0 for i – Lz ðLz þ 1Þ
NgpWgps �Wehr for i ¼ LzðLz þ 1Þ

(
ð24Þ
2.4. Numerical method

Eqs. (19)–(22) are solved iteratively to obtain the aver-
age occupancy numbers at steady state, and capture the J–
V behavior of a bilayer device. The calculation begins by
setting the occupancy numbers of all particles to zero,
everywhere except at the electrodes. Based on these initial
conditions, a first guess for the rate constants is obtained
for a given value of the applied voltage, Vext. At each itera-
tion, exciton and charge carrier equations are solved first.
Their occupancies are updated by a finite difference
scheme with time steps of 0.01 ps and 5.0 ps, respectively.
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Although generally not the most efficient, we found this
method, along with the choice of different time steps,
effective in avoiding the numerical instabilities related to
the abrupt change in carrier densities in the first layers
next to the electrodes. The number of geminate pairs is ob-
tained from Eq. (20), setting dNgp/dt = 0. The entire proce-
dure is repeated until the steady state is reached. This
occurs when the carrier fluxes through the electrodes bal-
ance the net carrier generation rates at the interface (see
Eq. (24)). The following equations are used to calculate
the electron and hole current densities at the electrodes:

Jel ¼ KJ Welh
0;1Mxy �Welh

1;0Nel
1

� �
Jho ¼ KJ Whoh

Mzþ1 ;Mz
Mxy �Whoh

Mz ;Mzþ1
Nho

Mz

� � ð25Þ

where KJ = 1.602 � 1010/(Mxy‘
2) [mA ps/cm2], so that Jel(ho)

are expressed as [mA/cm2]. Combining Eqs. (25) and (24),
the following convergence criterion is obtained:

jJel � KJ Welg
Lz
j < DJ ; jJho � KJ Whog

Lzþ1j < DJ ð26Þ

where the numerical threshold, DJ, is set to 10�3 mA/cm2.
At steady state, the total current is calculated as J = Jel + Jho.

3. Experimental: device preparation and
characterization

The 1DCG model is used in this work to investigate the
J–V properties of three Cathode/PCBM/P3HT/PEDOT:PSS/
ITO bilayers, using three different cathode materials. The
devices were prepared starting from a transparent anode
made by a pre-patterned ITO glass (Kintec, 17 X/square)
with a PEDOT:PSS (Baytron P VP AL 4083) layer of 60 nm
spin coated on top, dried on an hot-plate at 100 �C for
5 min in air and then inserted in a glove-box for further de-
vice assembling. The active layers were deposited by spin
coating following a procedure developed by Ayzner et al.
[28]. The P3HT (Plexcore OS2100) with high molecular
weight (Mn: 62602 Mw: 119010) and 99% regioregularity
was purchased from Plextronics. The polymer was dis-
solved in o-dichlorobenzene and kept at 50 �C overnight
prior to spin coating into the PEDOT:PSS/ITO substrates.
The film thickness, measured with a profilometer (Dektak)
was 50 nm. After drying for at least 30 min, a PCBM over-
layer (Solenne b.v.) of 30 nm was deposited from dichloro-
methane, a solvent for PCBM but not for P3HT. Prior to
cathode evaporation, the deposited films were annealed
on a hot plate at 150 �C for 30 min. The P3HT underlayer,
prior to PCBM deposition and after washing out the fuller-
ene layer, exhibited similar UV–Vis absorption spectrum
and film thickness. These features, in agreement with pre-
vious results, are likely evidencing that the assembling
procedure leads to two distinct layers of P3HT and PCBM,
Table 3
Overview of experimental device parameters.

Parameter Symbol Al LiF/Al Ca/Al Unit

OC voltage Voc 0.46 0.56 0.63 V
SC current JSC 6.39 6.67 6.24 mA/cm2

Fill Factor FF 0.64 0.65 0.71 –
with quite low interpenetration between the two compo-
nents [28]. The electrodes were thermally evaporated
through a shadow mask of 6 mm2, in a vacuum chamber
at 2 � 10�6 mbar. The devices were prepared with three
different cathodes prepared by subsequent evaporation
steps: LiF (1.5 nm)/Al (100 nm); Ca (20 nm)/Al (100 nm)
or Al (100 nm). The current density–voltage (J–V) charac-
teristics of the cells were measured at room temperature
inside the glove box in nitrogen atmosphere, using a Keith-
ley 2600 sourcemeter under 100 mW/cm2 solar simula-
tion, with a Class A AM1.5 ABET Sun 2000 solar
simulator, as measured with a calibrated KG5 + Si cell. Ta-
ble 3 collects some relevant experimental device parame-
ters for each device.
4. Results and discussion

In order to optimize the model parameters, a fitting to
the experimental J–V data was performed over the range
from �0.5 to 1.1 V. Our fitting results are shown in Fig. 2.
Table 4 gives the final values of the fit parameters. It
should be noted that all these values are consistent with
those commonly used in KMC simulations, as we shall
see below. The upper part of Table 4 groups the parameters
common to all devices. Literature values [38,39] of the
cathode work functions have also been included, for com-
parison purposes. It should be noted that these values refer
to the work functions of the ‘‘bare’’ substrate, and do not
account for surface contamination effects, often observed
in solution processed devices [40].

The relative permittivity was not optimized and was ta-
ken as 3.5 for both PCBM and the P3HT. The lattice con-
stant, corresponding to the inter-layer distance, was set
to 1 nm. To simulate the solar illumination at an intensity
of 100 mW/cm2, we fixed the exciton generation rate per
site at 6 � 10�12 nm�3 ps�1. The exciton dissociation rate,
wexs, was taken as 20 ps�1 [27]. Some test calculations were
performed to evaluate the effect of the device size. Increas-
ing the electrode surface area from 0.01 lm2 to 1 lm2 was
found to change the optimal values of device-specific
Fig. 2. Experimental (symbols) and simulated (lines) J–V curves. The inset
shows the region around the VOC in detail.



Table 4
Final values of the model fit parameters for the data shown in Fig. 2.
⁄Experimental values of the cathode work functions were taken from Refs.
[38] and [39].

Parameter (symbol) Value Unit

Relative perm. (�r) 3.5 –
Lattice constant (‘) 1 nm
Ex. gen. rate (wexg) 6 � 1027 m�3 s�1

Ex. diss. rate (wexs) 20 ps�1

Ex. hopping rate (wexh) 1.2 ps�1

Ex. decay rate (wexd) 8 � 10�4 ps�1

Gp. decay rate (Wgpd) 2.3 � 106 s�1

PEDOT:PSS/ITO WF (/anode) 4.95 eV

P3HT HOMO EH
D

� � �5.30 eV

Al LiF/Al Ca/Al

El. mobility lel
0

� �
3.0 3.5 2.4 10�3 cm2

sV

Ho. mobility lho
0

� �
2.0 1.7 4.1 10�4 cm2

sV

PCBM LUMO EL
A

� �
�4.28 �4.17 �4.11 eV

Cathode WF (/cathode) 4.28 4.17 4.12 eV
Exp. Cath. WF /exp

cathode

� �� 4.28 3.70 2.87 eV
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parameters by 5%, with no effect on the main conclusions
reported below.

The exciton hopping and decay rates had the highest
influence on the absolute magnitude of the current density
at negative biases. Our choice (wexh = 1.2 ps�1 and
wexd = 8 � 10�4 ps�1) was dictated by the need to match
short-circuit current densities on the order of 6 mA/cm2.
These refer to both donor and acceptor, since the same rate
constants were used to model exciton transport in these
materials. Using these parameters, the values of the exci-
ton diffusion coefficient (Dex = 2.0 � 10�3 cm2/s) and diffu-
sion length (Lex = 38.72 nm) were extracted from Eqs. (4)
and (6). It is important to note that these estimates are
drawn from the continuum distribution of excitons at stea-
dy state, and their value does not depend on the exciton
hopping length (1 nm). Our value for Dex agrees with that
reported by Shaw [41] for P3HT films of varying thickness
(1.8 � 10�3 cm2/s). Very few experimental studies exist in
the literature on exciton transport in PCBM [42,43], which
is generally recognized as a weak emitter [44]. The value of
3.33 � 10�5 cm2/s, calculated starting from the time-re-
solved emission data published by Cook et al. [42] is two
order of magnitude lower than ours. Nonetheless, as no-
ticed by these authors, larger exciton diffusion lengths
and coefficients may be expected on the basis of those ob-
tained for C60 (up to 40 nm) [45]. Our estimate for Lex looks
higher than that of 8–27 nm commonly reported in the lit-
erature for P3HT [46], but is substantially lower than the
value of 80 nm reported by Ayzner et al. [28] for their
P3HT/PCBM bilayers. They attributed this discrepancy to
long-range exciton transport mechanisms [30]. The en-
hanced exciton diffusion length might be a key factor
responsible for the power conversion efficiency of our de-
vices (2.5% on the average).

Exciton dissociation leads to the formation of geminate
electron–hole pairs. In most DD models, where exciton
dynamics is not explicitly taken into account, the rate at
which this process occurs is given as an input parameter
and kept constant over the entire voltage range. In our
model, conversely, its value is given by Nex
Lz
þ Nex

Lzþ1

� �
Wexs

and may weakly depend on the applied voltage in response
to the change in the occupancy numbers (see Eq. (7)). Per-
forming the simulations, we found an average value of
3.18 � 1027 m�3 s�1 over the full fitting range. This is close
to that used in DD simulations [19,47] and indicates that
only half of the harvested photons (6 � 1027 m�3 s�1) are
converted into geminate pairs. A fraction of these pairs do
not contribute to photocurrent generation, but recombine
at rate Wgpd. At short circuit, this fraction was found to be
about 23.5% for all devices, finally leading to about 40%
internal quantum efficiency (IQE).

Our optimal values for /anode and EH
D are close to those

reported in the literature for these materials [48,49]. A
sensitivity test, in which these parameters were varied
independently, was carried out to assess their influence
on VOC and current density. The results showed that VOC

was not affected by /anode but controlled by EH
D , with a

proportionality factor close to one. Both of these findings
are consistent with experimental studies carried out on
bilayers [50] as well as bulk heterojunctions [48]. The ef-
fect of these parameters on the current density is related
to the change in the hole injection barrier, �/anode � EH

D .
Setting its value too high (>0.5 eV) or too low (<0.1 eV)
led to a significant decrease in the current density, and
the appearance of the so-called ‘‘S-curve’’ [51]. This out-
come, presumably associated with charge depletion in
the region next to the metal contacts, will be investigated
in a forthcoming paper.

To model the effect of using different cathode materials,
the remaining parameters in Table 4 were optimized inde-
pendently for each device. Electron and hole mobilities
were slightly adjusted to better approximate experimental
current densities at low and high biases, respectively. The
fact that no significant mixing of D and A phases has oc-
curred during device assembling [28], enables a compari-
son with mobility data given in the literature for pure
films. Our results are in good agreement with those re-
ported by Waldauf et al. [52] for PCBM
lel

0 ¼ 3:5� 10�3 cm2=s=V
� �

, and Choulis et al. [53] for

P3HT lho
0 ¼ 3:0� 10�4 cm2=s=V

� �
. This confirms the

soundness of our model and justifies the assumption of

pure phases in device representation.
As can be seen from Table 3, changing the top elec-

trode material has little influence on the VOC, despite
the considerable differences in the cathode work func-
tions (bottom line of Table 4). A total variation of only
0.17 V was observed on going from Al
/exp

cathode ¼ 4:28 eV
� �

to Ca /exp
cathode ¼ 2:87 eV

� �
. This behav-

ior, similar to that observed in bulk heterojunctions
(BHJs) [38,54], suggests that these metals may form oh-
mic contacts with PCBM by a mechanism known as Fermi
level pinning [54–56]. When this occurs, the work func-
tion of the metal aligns to that of the semiconductor via
charge transfer across the metal/organic interface. The
same phenomenon is sometimes discussed in terms of
the formation of an interface dipole [57,58]. It is certainly
a very general mechanism but, when it comes to discuss-
ing specific situations, the analysis and theoretical
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interpretation of the experimental data can be somewhat
controversial and a subject of debate.

Our optimized values for EL
A and /cathode, given in Table 4,

support the existence of ohmic contacts at the Cathode/
PCBM interface. In each case, the best fits were obtained
by pinning the cathode work function at the PCBM LUMO
energy level. Owing to the accumulation of electrons close
to the cathode, this level does not represent the effective
transport level of electrons injected in the acceptor. Taking
into account the effect of both the image charge and the
electrostatic potential, we found this level to be located at
about �3.9 eV, which roughly agrees with the PCBM LUMO
energy commonly reported in the literature (�3.7 eV [59]).

The small differences in EL
A values are somewhat unex-

pected and are likely associated with our approximate
description of the metal/semiconductor interface. The
development of a better model of the interfacial dipole
layer is currently in progress. This should allow us to use
a single EL

A value for all devices.
The influence of EL

A and /cathode on the VOC is entirely
similar to that above observed for EH

D and /anode. Again,
the position of the VOC is essentially controlled by energy
levels of the semiconductors (EL

A and EH
D), rather than by

the metal work functions. This outcome has quite a simple
explanation. Changing /cathode (/anode) alters both the built-
in voltage and the electron (hole) injection barrier height.
The effects of these changes nearly cancel each other, leav-
ing the VOC unaffected. On the other hand, changing
EL

A EH
D

� �
, only affects the electron (hole) injection barrier

height and, consequently, the VOC position. This provides
a qualitative explanation to the negligible dependence of
VOC on the electrode work function, which has been exper-
imentally observed in a number of OSCs [50], including
bulk heterojunctions [38].
5. Conclusions

KMC is a powerful tool to investigate the J–V properties
of OSCs. Its applicability to the study of devices character-
ized by ohmic behavior is nonetheless limited by the
small-barrier problem. To overcome it, we have developed
a one-dimensional coarse-grained (1DCG) numerical ap-
proach to photocurrent generation in bilayer heterojunc-
tion solar cells. The 1DCG model of the device has been
derived from the three-dimensional one used in KMC sim-
ulations and it incorporates the generation, transport and
recombinations of charge carriers, excitons, and electron/
hole pairs. The model has been used to investigate the J–
V properties of three Cathode/PCBM/P3HT/PEDOT:PSS/ITO
bilayers with high fill factors. From the fitting to the exper-
imental data, we conclude the short-circuit current density
to be mainly associated with the high exciton diffusion
length, which arises from the deposition of the PCBM over-
layer. The fact that electron and hole mobilities agree with
the data given in the literature for pure films is consistent
with the assumption of pure phases separated by a sharp
and flat interface. The weak dependence of VOC on the cath-
ode work functions points to the existence of ohmic con-
tacts at the Cathode/PCBM interface. Our fitting results
confirms this expectation, which is also consistent with
the mechanism of Fermi level pinning, already observed
in BHJs. A qualitative explanation of this outcome has been
provided, which involves a trade off between the built-in
voltage and the electron injection barrier height. Addition-
ally, we have shown that, in our model, the VOC is con-
trolled by the energy levels of the acceptor and the donor.

It is worth discussing the analogies and differences be-
tween our model and existing ones. These essentially in-
clude KMC and DD models, since, to our knowledge,
master equation approaches have not yet been applied to
full OSC modeling. Our method strongly relies on the
KMC framework, where all microscopic phemomena can
be described by means of simple equations. This consider-
ably simplifies the implementation of effects that require
more complex expressions in DD approaches. An example
is given by the mathematical expressions that govern
charge injection. In the model proposed by Barker et al.
[19], charge injection is described by a complex equation
derived from the Scott–Malliaras model [9]. In our model,
conversely, this is simply treated as a hopping process
across the metal–organic interface.

The main advantage of our model, compared to KMC,
lies in the possibility to model OSC devices characterized
by ohmic behavior. Use of coarse graining in both space
and time significantly reduces the computational cost.
The calculation of a full J–V curve takes about 25–30 min
on a single processor. At the same time, coarse-graining
suffers of some limitations. Spatially averaging the electro-
static interactions over the coarse cell can be expected to
underestimate the influence of correlation effects. These
play an important role in particle transport and electron–
hole recombination. Furthermore, as pointed out by Houili
et al. [26], continuum, mean-field approaches fail to treat
the Coulomb interaction correctly at both short and long
distances. This aspect has recently been investigated in de-
tail by van der Holst and co-workers [60], who have shown
that one-dimensional DD models tend to overestimate the
KMC current density in single-type carrier devices charac-
terized by small injection barriers (<0.3 eV). Owing to the
small-barrier problem, the comparison between 1DCG
and KMC approaches has not been attempted in the cur-
rent work. We shall address such a comparison in a forth-
coming paper, for systems computationally tractable by
both methods.

In contrast to KMC, drift–diffusion has more extensively
been compared with experimental J–V data. Our method
shares with DD approaches the use of geminate pairs to de-
scribe carrier generation and recombination at the inter-
face. Apart from this analogy, which has been discussed
above, considerable differences exist in the way the pro-
cesses underlying photocurrent generation are simulated.
It is therefore surprising that, as far as the dependence of
the VOC on the cathode work function is considered, our
model behaves similarly to that developed by Barker
et al. [19] and Cheyns et al. [21].

We have neglected both energy and disorder within the
photoactive layer [1,10,35,61–63]. The former plays a role
in the definition of the average transport levels, and can
be expected to influence the hopping rates at all regimes.
Its inclusion is necessary to account for the temperature
dependence of the carrier mobilities. The assumption of



Fig. A.1. Average pairwise energies as a function of the separation
distance for ‘ = 1 nm. Electron and holes mobilities were both taken as
10�7 m2/V/s. KMC averages were estimated with an accuracy of
5 � 10�5 eV (smaller than symbol size).

Fig. A.2. A simplified, two-dimensional sketch of the pairwise interac-
tions that contribute to DET

i;j (stipples), along with the initial (ini) and final
(end) states that characterize electron hopping. Dotted lines identify
interactions that do not change during the hopping process, and,
therefore, do not contribute to DET

i;j. Particle positions along the vertical
axis are arbitrary.
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equally spaced hopping sites clearly conflicts with the con-
cept of transport in disordered solids. Positional disorder is
also necessary for the description of more complex mor-
phologies, such as bulk heterojunctions and partially inter-
mixed bilayers. Modelling both effects would be difficult
and perhaps also questionable within the present ap-
proach. Instead, their introduction in standard, three-
dimensional KMC algorithms is almost straightforward.
We are currently working in order to improve the speed
and accuracy of such simulations, along the lines of our
earlier work on electrostatic interactions [27].
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Appendix A. Calculation of the electrostatic interactions

The term DEC
i;j in Eq. (15) accounts for the change in the

total electrostatic energy associated with the hopping of
one charge from the i-th to the j-th layer. We write it as
the sum of two contributions:

DEC
i;j ¼ DES

i;j þ DET
i;j; ðA:1Þ

where DES
i;j is the self-interaction between the hopping

charge and its images inside the electrodes, and DET
i;j is

the cross-interaction term. The first term can be written as:

DES
i;j ¼ ES

j � ES
i ¼ �

1
2

UðvjÞ þ
1
2

UðviÞ; ðA:2Þ

where vi(j) is distance between the charge and its closest
image before (after) hopping, while U the electrostatic po-
tential energy function. Note that, for a charge occupying
the i-th layer, the closest image can be located at i0 = �i
(across the cathode) or i0 = 2Mz + 2 � i (across the anode).
In Ref. [27] we have shown that, in a device with semi-infi-
nite metallic electrodes, the distribution of the charges is
periodic in three dimensions and U can be evaluated ex-
actly using the Ewald summation method. Here, for sim-
plicity, we calculate U using a cutoff formula [27], setting
the cutoff distance to twice the active layer thickness
(rcut = 2(Mz + 1)‘). To model charge injection and extrac-
tion, Eq. (A.2) is modified by setting ES

0 ¼ ES
Mzþ1 ¼ 0.

The second term in Eq. (A.1) accounts for the interac-
tions between the hopping particle and all other charges,
excluding the closest image. The starting point for its con-
struction is the average pairwise interaction energy be-
tween two charges located at the i-th and j-th layer, Ui;j.
This is:

Ui;j ¼
P

k2Xi

P0
l2Xj

UðrklÞe�UðrklÞ=kBTP
k2Xi

P0
l2Xj

e�UðrklÞ=kBT

� 1
M2

xy

X
k2Xi

X
l2Xj

UðrklÞ; ðA:3Þ

where the prime excludes from the summation the terms
with k = l, when i = j. Xi(j) refers to the set of possible sites
for a particle in the i(j)-th layer, while rkl represents the
distance between the sites k and l. In our bilayer model,
the case i = j occurs for equally charged carriers, but not
for oppositely charged ones where ji � jjP 1. The approx-
imation of Eq. (A.3) is appropriate at large interlayer dis-
tances (we used it above 7 nm). At shorter distances, Ui;j

was evaluated numerically by two sets of fine-grid KMC
simulations, with two charges constrained to move on
two layers facing each other along the z axis. The resulting
potential functions will be denoted by U�i;j (for oppositely
charged carriers) and Ui;jþ (for equally charged carriers).
The results of these calculations are reported in Fig. A.1
for ‘ = 1 nm and Mx = My = 100.

Next, we focus on the pairwise interactions that con-
tribute to DET

i;j, i.e. those subject to change during the hop-
ping process. A schematic view of such interactions is
given in Fig. A.2, along with the initial (ini) and final
(end) states that characterize charge hopping at the
coarse-grained level. Hereafter, we shall assign to these
states single-particle ‘‘interaction’’ energies, namely ET;ini

i

and ET;end
j , so that DET

i;j can be written as ET;end
j � ET;ini

i . ET;ini
i

quantifies the energy loss associated with the ‘‘removal’’
of a charge from the i-th layer. It can be written as the
sum of intra- and inter-layer contributions [32]. The in-
ter-layer contribution, ET;ini

i;inter , accounts for the interactions
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between the hopping particle in the i-th layer and those in
the other layers, as well as their images:

ET;ini
i;inter ¼

þ
PLz

k¼1
k–i

Nel
k Vþi;k �

PMz

k¼Lzþ1
Nho

k V�i;k 1 6 i 6 Lz

�
PLz

k¼1
Nel

k V�i;k þ
PMz

k¼Lzþ1
k–i

Nho
k Vþi;k Lz þ 1 6 i 6 Mz;

8>>>>>><
>>>>>>:

ðA:4Þ

where V�i;k ¼ U�i;k � U�
i;k0

. k0 defines the position of the closest
image for a particle in the k-th layer, and can either be �k
or 2Mz + 2 � k, as mentioned above. The construction of the
terms V�i;k is illustrated in Fig. A.3. Eq. (A.4) can be used in
1DCG or CG-KMC simulations, indifferently.

The second contribution to ET;ini
i ; ET;ini

i;intra, represents the
energy of a particle interacting with others within the
same layer. Its expression differs from that one would ob-
tain in CG-KMC NelðhoÞ

i � 1
� �

Vþi;i, for electrons (holes). The
reason is that, in CG-KMC, the occupancy numbers vary
discretely at each iteration, while, in our model, they
change continuously. To account for this difference, we re-
place NelðhoÞ

i � 1
� �

with its time average NelðhoÞ
i � 1

D E
, in the

above expression. In the following, we shall rewrite this
average in a form suitable for 1DCG simulations, e.g. as a
function of NelðhoÞ

i . For simplicity, we consider the case of
electrons, writing Nel

i as a time average:

Nel
i ¼ hN

el
i i ¼

1
s
X

m

Nel
i ðmÞsm ¼

XMxy

n¼1

nf iðnÞ; ðA:5Þ

where Nel
i ðmÞ is the number of electrons at the each step in

an hypothetical KMC simulation, while s the total simula-
tion time. The function fi(n) represents the fraction of time
the i-th layer is occupied by n electrons:

fiðnÞ ¼
1
s
X

m

sm 8m : n ¼ Nel
iðmÞ: ðA:6Þ

According to Eq. (A.6), one has:

XMxy

n¼0

fiðnÞ ¼ 1: ðA:7Þ

From (A.5) it follows that:
Fig. A.3. Construction of the term V�i;k when k0 = 2Mz + 2 � k. Electrons are
represented by filled circles, holes by open ones. Dashed lines represent
the interactions that contribute to V�i;k. Dotted lines connect the charges
with their self-images across the anode. Note that U�k;i0 � U�

i;k0
, by

symmetry. Vþi;k can be obtained in the same way.
Nel
i � 1

D E
¼
XMxy

n¼1

ðn� 1Þ f iðnÞ: ðA:8Þ

Combining Eqs. (A.7) and (A.8) leads to:

Nel
i � 1

D E
¼ Nel

i

D E
� 1þ fið0Þ: ðA:9Þ

Similarly, one has:

Nel
i þ 1

D E
¼ Nel

i

D E
þ 1� fið0Þ: ðA:10Þ

Similar formulas hold for holes. Given Eq. (A.9) and the cor-
responding expression for holes, the intra-layer energy
takes the following form:

ET;ini
i;intra ¼

Nel
i � 1þ fið0Þ

� �
Vþi;i 1 6 i 6 Lz

Nho
i � 1þ fið0Þ

� �
Vþi;i Lz þ 1 6 i 6 Mz:

8><
>: ðA:11Þ

The only unknown in Eq. (A.11) is the value of fi(0) at all
layers. This corresponds to the fraction of time the i-th
layer is not occupied by electrons, or holes. To find it out,
we make the following hypothesis:

fiðnÞ ¼ ðnþ 1ÞCi f iðnþ 1Þ; for 0 6 n 6 Mxy � 1; ðA:12Þ

where Ci is constant at each layer. Hereafter, we shall dem-
onstrate that fi(0) can be approximated as:

fið0Þ ’
XMxy

n¼0

1
n!Cn

i

 !�1

; ðA:13Þ

when Ci ¼ 1=NelðhoÞ
i . For simplicity, we consider again the

case of electrons. First, we rewrite Nel
i combining Eqs.

(A.5) and (A.12):

Nel
i ¼ fið0Þ

XMxy

n¼1

1
ðn� 1Þ!Cn

i

: ðA:14Þ

Using Eqs. (A.12) and (A.7) can be written as:

1 ¼ fið0Þ
XMxy

n¼0

1
n!Cn

i

: ðA:15Þ

For Mxy large, we may assume Mxy � 1 �Mxy, thereby writ-
ing Eq. (A.15) as:

1 ¼ fið0Þ
XMxy

n¼1

Ci

ðn� 1Þ!Cn
i

: ðA:16Þ

Both Eqs. (A.14) and (A.16) must hold true for 1 6 i 6 Lz.
This can only be accomplished setting Ci ¼ 1=Nel

i in this
interval, and Ci ¼ 1=Nho

i for Lz + 1 6 i 6Mz. The calculation
of fi(0) via Eq. (A.13), can be performed truncating the
sum at n ’ 50, without significant loss in accuracy.

In analogy with ET;ini
i , the final energy, ET;end

j , can be
interpreted as the gain in energy associated with the ‘‘cre-
ation’’ of a charge in the j-th layer. To save CPU time, this
energy can be evaluated with respect to the initial state, as:

ET;end
j ¼ ET;ini

j þ ð1� fjð0ÞÞVþj;j � ð1� fið0ÞÞVþj;i: ðA:17Þ

During the hopping process, the occupancy numbers of the
i-th and j-th layers change to NelðhoÞ

i � 1
D E

and NelðhoÞ
j þ 1

D E
,



760 M. Casalegno et al. / Organic Electronics 13 (2012) 750–761
respectively. The latter two terms in Eq. (A.17) account for
this change thorugh Eqs. (A.9) and (A.10).

For charge injection and extraction the situation is
slightly different. Charge injection leads to the generation
of one electron (hole) in the first layer next to the cathode
(anode). To cast DET

i;j we consider the pairwise interactions
that are formed during this process. This leads to:

DET
i;j ¼ ET;ini

j þ ð1� fjð0ÞÞVþj;j; ðA:18Þ

where i = 0(Mz + 1) and j = 1(Mz) for electrons (holes). Fi-
nally, during charge extraction, the charge is removed from
the device, therefore:

DET
i;j ¼ �ET;ini

i ; ðA:19Þ

where i = 1(Mz) and j = 0(Mz + 1).
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